7,972 research outputs found

    Projective Representations of the Inhomogeneous Hamilton Group: Noninertial Symmetry in Quantum Mechanics

    Full text link
    Symmetries in quantum mechanics are realized by the projective representations of the Lie group as physical states are defined only up to a phase. A cornerstone theorem shows that these representations are equivalent to the unitary representations of the central extension of the group. The formulation of the inertial states of special relativistic quantum mechanics as the projective representations of the inhomogeneous Lorentz group, and its nonrelativistic limit in terms of the Galilei group, are fundamental examples. Interestingly, neither of these symmetries includes the Weyl-Heisenberg group; the hermitian representations of its algebra are the Heisenberg commutation relations that are a foundation of quantum mechanics. The Weyl-Heisenberg group is a one dimensional central extension of the abelian group and its unitary representations are therefore a particular projective representation of the abelian group of translations on phase space. A theorem involving the automorphism group shows that the maximal symmetry that leaves invariant the Heisenberg commutation relations are essentially projective representations of the inhomogeneous symplectic group. In the nonrelativistic domain, we must also have invariance of Newtonian time. This reduces the symmetry group to the inhomogeneous Hamilton group that is a local noninertial symmetry of Hamilton's equations. The projective representations of these groups are calculated using the Mackey theorems for the general case of a nonabelian normal subgroup

    Covariant spinor representation of iosp(d,2/2)iosp(d,2/2) and quantization of the spinning relativistic particle

    Get PDF
    A covariant spinor representation of iosp(d,2/2)iosp(d,2/2) is constructed for the quantization of the spinning relativistic particle. It is found that, with appropriately defined wavefunctions, this representation can be identified with the state space arising from the canonical extended BFV-BRST quantization of the spinning particle with admissible gauge fixing conditions after a contraction procedure. For this model, the cohomological determination of physical states can thus be obtained purely from the representation theory of the iosp(d,2/2)iosp(d,2/2) algebra.Comment: Updated version with references included and covariant form of equation 1. 23 pages, no figure

    A class of quadratic deformations of Lie superalgebras

    Full text link
    We study certain Z_2-graded, finite-dimensional polynomial algebras of degree 2 which are a special class of deformations of Lie superalgebras, which we call quadratic Lie superalgebras. Starting from the formal definition, we discuss the generalised Jacobi relations in the context of the Koszul property, and give a proof of the PBW basis theorem. We give several concrete examples of quadratic Lie superalgebras for low dimensional cases, and discuss aspects of their structure constants for the `type I' class. We derive the equivalent of the Kac module construction for typical and atypical modules, and a related direct construction of irreducible modules due to Gould. We investigate in detail one specific case, the quadratic generalisation gl_2(n/1) of the Lie superalgebra sl(n/1). We formulate the general atypicality conditions at level 1, and present an analysis of zero-and one-step atypical modules for a certain family of Kac modules.Comment: 26pp, LaTeX. Original title: "Finite dimensional quadratic Lie superalgebras"; abstract re-worded; text clarified; 3 references added; rearrangement of minor appendices into text; new subsection 4.

    A Selected Ion Flow Tube Study of the Reactions of Several Cations with the Group 6B Hexafluorides SF6, SeF6, and TeF6

    Get PDF
    The first investigation of the ion chemistry of SeF6_6 and TeF6_6 is presented. Using a selected ion flow tube, the thermal rate coefficients and ion product distributions have been determined at 300 K for the reactions of fourteen atomic and molecular cations, namely H3_3O+^+, CF3+_3^+, CF+^+, CF2+_2^+, H2_2O+^+, N2_2O+^+, O+^+, CO2+_2^+, CO+^+, N+^+, N2+_2^+, Ar+^+, F+^+ and Ne+^+ (in order of increasing recombination energy), with SeF6_6 and TeF6_6. The results are compared with those from the reactions of these ions with SF6_6, for which the reactions with CF+^+, CF2+_2^+, N2_2O+^+ and F+^+ are reported for the first time. Several distinct processes are observed amongst the large number of reactions studied, including dissociative charge transfer, and F−^-, F, F2−_2^- and F2_2 abstraction from the neutral reactant molecule to the reagent ion. The dissociative charge transfer channels are discussed in relation to vacuum ultraviolet photoelectron and threshold photoelectron-photoion coincidence spectra of XF6_6 (X = S, Se, and Te). For reagent ions whose recombination energies lie between the first dissociative ionisation limit, XF6_6 →\rightarrow XF5+_5^+ + F + e−^-, and the onset of ionisation of the XF6_6 molecule, the results suggest that if dissociative charge transfer occurs, it proceeds via an intimate encounter. For those reagent ions whose recombination energies are greater than the onset of ionisation, long-range electron transfer may occur depending on whether certain physical factors apply, for example non-zero Franck-Condon overlap. From the reaction kinetics, limits for the heats of formation of SeF4_4, SeF5_5, TeF4_4 and TeF5_5 at 298 K have been obtained; Δf\Delta_fHo^o(SeF4_4) < -369 kJ mol−1^{-1}, Δf\Delta_fHo^o(SeF5_5) < -621 kJ mol−1^{-1}, Δf\Delta_fHo^o(TeF4_4) > -570 kJ mol−1^{-1}, and Δf\Delta_fHo^o(TeF5_5) < -822 kJ mol−1^{-1}

    On the Structure of the Observable Algebra of QCD on the Lattice

    Full text link
    The structure of the observable algebra OΛ{\mathfrak O}_{\Lambda} of lattice QCD in the Hamiltonian approach is investigated. As was shown earlier, OΛ{\mathfrak O}_{\Lambda} is isomorphic to the tensor product of a gluonic C∗C^{*}-subalgebra, built from gauge fields and a hadronic subalgebra constructed from gauge invariant combinations of quark fields. The gluonic component is isomorphic to a standard CCR algebra over the group manifold SU(3). The structure of the hadronic part, as presented in terms of a number of generators and relations, is studied in detail. It is shown that its irreducible representations are classified by triality. Using this, it is proved that the hadronic algebra is isomorphic to the commutant of the triality operator in the enveloping algebra of the Lie super algebra sl(1/n){\rm sl(1/n)} (factorized by a certain ideal).Comment: 33 page

    On Combining Lensing Shear Information from Multiple Filters

    Full text link
    We consider the possible gain in the measurement of lensing shear from imaging data in multiple filters. Galaxy shapes may differ significantly across filters, so that the same galaxy offers multiple samples of the shear. On the other extreme, if galaxy shapes are identical in different filters, one can combine them to improve the signal-to-noise and thus increase the effective number density of faint, high redshift galaxies. We use the GOODS dataset to test these scenarios by calculating the covariance matrix of galaxy ellipticities in four visual filters (B,V,i,z). We find that galaxy shapes are highly correlated, and estimate the gain in galaxy number density by combining their shapes.Comment: 8 pages, no figures, submitted to JCA
    • …
    corecore